[1] PAWLAK Z. Rough Sets. International Journal of Computer & Information Sciences, 1982, 11(5): 341-356.
[2] SWINIARSKI R W, SKOWRON A. Rough Set Methods in Feature Selection and Recognition. Pattern Recognition Letters, 2003, 24(6): 833-849.
[3] YAO Y Y. Perspectives of Granular Computing // Proc of the IEEE International Conference on Granular Computing. Washington, USA: IEEE, 2005, I: 85-90.
[4] YAO Y Y. Artificial Intelligence Perspectives on Granular Computing // PEDRYCZ W, CHEN S M, eds. Granular Computing and Intelligent Systems. Berlin, Germany: Springer, 2011: 17-34.
[5] ZADEH L A. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems, 1997, 90(2): 111-127.
[6] PEDRYCZ W, LU W, LIU X D, et al. Human-Centric Analysis and Interpretation of Time Series: A Perspective of Granular Computing. Soft Computing, 2014, 18(12): 2397-2411.
[7] 段 洁,胡清华,张灵均,等.基于邻域粗糙集的多标记分类特征选择算法.计算机研究与发展, 2015, 52(1): 56-65
(DUAN J, HU Q H, ZHANG L J, et al. Feature Selection for Multi-label Classification Based on Neighborhood Rough Sets. Journal of Computer Research and Development, 2015, 52(1): 56-65.)
[8] 张 维,苗夺谦,高 灿,等.邻域粗糙协同分类模型.计算机研究与发展, 2014, 51(8): 1811-1820.
(ZHANG W, MIAO D Q, GAO C, et al. A Neighborhood Rough Sets-Based Co-training Model for Classification. Journal of Computer Research and Development, 2014, 51(8): 1811-1820.)
[9] 邓大勇,薛欢欢,苗夺谦,等.属性约简准则与约简信息损失的研究.电子学报, 2017, 45(2): 401-407.
(DENG D Y, XUE H H, MIAO D Q, et al. Study on Criteria of Attribute Reduction and Information Loss of Attribute Reduction. Acta Electronica Sinica, 2017, 45(2): 401-407.)
[10] BLUM A L, LANGLEY P. Selection of Relevant Features and Examples in Machine. Artificial Intelligence, 1997, 97(1/2): 245-271.
[11] JENSEN R, SHEN Q. Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough-Based Approaches. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12): 1457-1471.
[12] 刘 勇,熊 蓉,褚 健.Hash快速属性约简算法.计算机学报, 2009, 32(8): 1493-1499.
(LIU Y, XIONG R, CHU J. Quick Attribute Reduction Algorithm with Hash. Chinese Journal of Computers, 2009, 32(8): 1493-1499.)
[13] CHEN D G, ZHANG X X, LI W L. On Measurements of Covering Rough Sets Based on Granules and Evidence Theory. Information Sciences, 2015, 317: 329-348.
[14] WU W Z, LEUNG Y, ZHANG W X. Connections between Rough Set Theory and Dempster-Shafer Theory of Evidence. International Journal of General Systems, 2002, 31(4): 405-430.
[15] WU W Z, ZHANG M, LI H Z, et al. Knowledge Reduction in Random Information Systems via Dempster-Shafer Theory of Evidence. Information Sciences, 2005, 174(3/4): 143-164.
[16] WU W Z. Attribute Reduction Based on Evidence Theory in Incomplete Decision Systems. Information Sciences, 2008, 178(5): 1355-1371.
[17] YAO Y Q, MI J S, LI Z J. Attribute Reduction Based on Genera-lized Fuzzy Evidence Theory in Fuzzy Decision Systems. Fuzzy Sets and Systems, 2011, 170(1): 64-75.
[18] 曾凡智,卢炎生,黄国顺,等.基于D-S证据理论直接求代数约简和代数核.中山大学学报(自然科学版), 2011, 50(5): 54-58, 63.
(ZENG F Z, LU Y S, HUANG G S, et al. A Direct Approach for Algebraic Reduction and Core Attributes Based on D-S Evidence Theory. Acta Scientiarum Naturalium Universitatis Sunyatseni 2011, 50(5): 54-58, 63.)
[19] CHEN D G, LI W L, ZHANG X, et al. Evidence-Theory-Based Numerical Algorithms of Attribute Reduction with Neighborhood-Covering Rough Sets. International Journal of Approximate Reaso-ning, 2014, 55(3): 908-923.
[20] QIAN Y H, LIANG J Y, PEDRYCZ W, et al. An Efficient Acce-lerator for Attribute Reduction from Incomplete Data in Rough Set Framework. Pattern Recognition, 2011, 44(8): 1658-1670.
[21] QIAN Y H, LIANG J Y, PEDRYCZ W, et al. Positive Approximation: An Accelerator for Attribute Reduction in Rough Set Theory. Artificial Intelligence, 2010, 174(9/10): 597-618.
[22] YAO Y Y, ZHAO Y. Attribute Reduction in Decision-Theoretic Rough Set Models. Information Sciences, 2008, 178(17): 3356-3373.
[23] MIN F, HE H P, QIAN Y H, et al. Test-Cost-Sensitive Attribute Reduction. Information Sciences, 2011, 181(22): 4928-4942.
[24] MA X, WANG G Y, YU H, et al. Decision Region Distribution Preservation Reduction in Decision-Theoretic Rough Set Model. Information Sciences, 2014, 278: 614-640.
[25] 王国胤,于 洪,杨大春.基于条件信息熵的决策表约简.计算机学报, 2002, 25(7): 759-766.
(WANG G Y, YU H, YANG D C. Decision Table Reduction Based on Conditional Information Entropy. Chinese Journal of Computers, 2002, 25(7): 759-766.)
[26] ZHANG X Y, MIAO D Q. Three-Way Weighted Entropies and Three-Way Attribute Reduction // Proc of the International Conference on Rough Sets and Knowledge Technology. Berlin, Germany: Springer, 2014: 707-719.
[27] 邓大勇,黄厚宽,李向军.不一致决策系统中约简之间的比较.电子学报, 2007, 35(2): 252-255.
(DENG D Y, HUANG H K, LI X J. Comparison of Various Types of Reductions in Inconsistent Systems. Acta Electronica Sinica, 2007, 35(2): 252-255.)
[28] DAI J H, HAN H F, HU Q H, et al. Discrete Particle Swarm Optimization Approach for Cost Sensitive Attribute Reduction. Know-ledge-Based Systems, 2016, 102: 116-126.
[29] DAI J H, XU Q. Attribute Selection Based on Information Gain Ratio in Fuzzy Rough Set Theory with Application to Tumor Classification. Applied Soft Computing, 2013, 13(1): 211-221.
[30] WANG S P, ZHU W, ZHU Q X, et al. Four Matroidal Structures of Covering and Their Relationships with Rough Sets. International Journal of Approximate Reasoning, 2013, 54(9): 1361-1372.
[31] 袁修久,杨合俊,张小水.广义决策约简同相对约简的关系.空军工程大学学报(自然科学版), 2005, 6(1): 44-47.
(YUAN X J, YANG H J, ZHANG X S. Relationship between Generalized Decision Reduction and Relative Reduction. Journal of Air Force Engineering University(Natural Science Edition), 2005, 6(1): 44-47.) |